MicroRNA-182 Regulates Neurite Outgrowth Involving the PTEN/AKT Pathway

نویسندگان

  • Wu M. Wang
  • Gang Lu
  • Xian W. Su
  • Hao Lyu
  • Wai S. Poon
چکیده

MicroRNAs are implicated in neuronal development and maturation. Neuronal maturation, including axon outgrowth and dendrite tree formation, is regulated by complex mechanisms and related to several neurodevelopmental disorders. We demonstrated that one neuron-enriched microRNA, microRNA-182 (miR-182), played a significant role in regulating neuronal axon outgrowth and dendrite tree formation. Overexpression of miR-182 promoted axon outgrowth and complexity of the dendrite tree while also increasing the expression of neurofilament-M and neurofilament-L, which provide structural support for neurite outgrowth. However, a reduction of miR-182 inhibited neurite outgrowth. Furthermore, we showed that miR-182 activated the AKT pathway by increasing AKT phosphorylation on S473 and T308 and inhibiting PTEN activity by increasing phosphorylation on S380. Inhibition of AKT activity with the PI3-K inhibitor LY294002 could downregulate AKT and PTEN phosphorylation and suppress axon outgrowth. In addition, we showed that BCAT2 might be the target of miR-182 that takes part in the regulation of neuronal maturation; blockage of endogenous BCAT2 promotes axon outgrowth and AKT activity. These observations indicate that miR-182 regulates axon outgrowth and dendrite maturation involving activation of the PTEN/AKT pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a conserved signal transduction cascade that is fundamental for the correct development of the nervous system. The major negative regulator of PI3K signaling is the lipid phosphatase DAF-18/PTEN, which can modulate PI3K pathway activity during neurodevelopment. Here, we identify a novel role for DAF-18 in promoting neurite outgrowth ...

متن کامل

microRNA-222 Targeting PTEN Promotes Neurite Outgrowth from Adult Dorsal Root Ganglion Neurons following Sciatic Nerve Transection

Dorsal root ganglia (DRG) neurons spontaneously undergo neurite growth after nerve injury. MicroRNAs (miRNAs), as small, non-coding RNAs, negatively regulate gene expression in a variety of biological processes. The roles of miRNAs in the regulation of responses of DRG neurons to injury stimuli, however, are not fully understood. Here, microarray analysis was performed to profile the miRNAs in ...

متن کامل

PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons.

In vivo regeneration of peripheral neurons is constrained and rarely complete, and unfortunately patients with major nerve trunk transections experience only limited recovery. Intracellular inhibition of neuronal growth signals may be among these constraints. In this work, we investigated the role of PTEN (phosphatase and tensin homolog deleted on chromosome 10) during regeneration of periphera...

متن کامل

Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells.

Proneuronal basic helix-loop-helix (bHLH) transcription factor, neurogenin 1 (Ngn1), regulates neuronal differentiation during development of the cerebral cortex. Akt mediates proneuronal bHLH protein function to promote neuronal differentiation. Here, we show that recombinant human erythropoietin (rhEPO) significantly increased Akt activity and Ngn1 mRNA levels in neural progenitor cells deriv...

متن کامل

New Function of the Adaptor Protein SH2B1 in Brain-Derived Neurotrophic Factor-Induced Neurite Outgrowth

Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF) binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017